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Abstract 

An exact probability density function for the magni- 
tude of the normalized structure factor IEI has been 
derived for the space group P1, taking account of 
the presence of one non-crystallographic center of 
symmetry. The function is based on the exact solution 
of the corresponding random-walk model and its 
expansion into a Fourier series. The above result is 
compared with simulated semi-cumulative distribu- 
tions based on hypothetical structures and very good 
agreement is obtained for the equal-atom case, as 
well as for a heterogeneous asymmetric subunit con- 
taining fourteen carbon atoms and one uranium atom. 
The new exact bicentric probability density functions 
of I EI, for the space group P1, reduce to the well 
known asymptotic expressions that are valid for 
equal-atom structures and a large number of atoms 
in the asymmetric unit of the space group. 

Introduction 

Effects of non-crystallographic symmetry on distribu- 
tions of diffracted intensity have long since been 
recognized and investigated. Major attention has been 
devoted to the presence of one or more non-crystallo- 
graphic centers in centrosymmetric (Lipson & 
Woolfson, 1952; Rogers & Wilson, 1953) and non- 
centrosymmetric (Srinivasan & Parthasarathy, 1976) 
crystals composed of equal atoms, and similar 
approximations based on the central limit theorem 
were also derived for the presence of non-crystallo- 
graphic translational symmetry (hyperparallelism; 
Rogers & Wilson, 1953). 
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The best known, among these 'anomalous' distri- 
butions, is that due to the presence of one non- 
crystallographic center of symmetry, i.e. the bicentric 
distribution. An approximate generalization of this 
distribution to centrosymmetric space groups, and 
any atomic composition of the asymmetric unit, has 
recently been given by Ghosh & Nig~m (1983) as a 
three-term expansion, with coefficients depending on 
definite integrals that can be tabulated. Another route 
to such generalizations has been outlined by Shmueli 
& Wilson (1982, 1983) and explicit polynomials, 
orthogonal to the Rogers-Wilson (1953) bicentric 
probability density function (p.d.f.) have been 
obtained. Such approximate generalizations may 
prove useful for not too large departures from the 
asymptotic bicentric p.d.f., but their convergence 
behavior is obviously space-group dependent and 
may give rise to diffÉculties in space groups of low 
symmetry (see, e.g., Shmueli, 1982a). 

An exact solution to this problem, at least for the 
important case of the space group P i ,  can be given 
in the form of a p.d.f, based on a Fourier expansion 
of the exact solution to the problem of random walk 
(Barakat, 1974; Weiss & Kiefer, 1983; Kiefer & Weiss, 
1984). Such p.d.f.'s have recently been applied with 
success to effects of atomic heterogeneity on depar- 
tures from the widely used Wilson (1949) distribu- 
tions (Shmueli, Weiss, Kiefer & Wilson, 1984). 

The aims of the present paper are (i) to derive an 
exact probability density function for the magnitude 
of the normalized structure factor, which accounts 
for the presence of a non-crystallographic center in 
the asymmetric unit of P1 for an arbitrary atomic 
composition, and (ii) to demonstrate the probable 
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usefulness of this p.d.f, by its comparison with simu- 
lated distributions, arising from equal-atom as well 
as highly, heterogeneous asymmetric units. It is also 
shown that the exact p.d.f, proposed in this paper 
approaches the Rogers-Wilson bicentric p.d.f, in the 
limit of a large number of equal atoms. 

The bicentric p.d.f, for P1 

Let the asymmetric unit of P1 consist of two identical 
subunits, which are related by a center of symmetry 
and assume that all the atoms, as well as the additional 
center, are located in general Wyckoff positions of 
the space group. The equivalent atomic positions with 
respect to the non-crystallographic center at, say, d 
can be labeled as rj and rj+N/4, and it is readily seen 
that 

rj+N/4 = - r j  + 2d. (1) 

The structure factor for the above arrangement can 
thus be written as 

N / 4  

F ( h ) = 2  ~ f j [ c o s 2 7 r h . r j + c o s 2 7 r h . ( 2 d - r j ) ]  
j = l  

N / 4  

= 4  Y'. f j cos (27 rh .d )  c o s [ 2 r r h . ( r j - d ) ] .  (2) 
j = l  

Since all the positions are general, and under the 
assumption that a large set of F 's  is available, the 
scalar products h. rj and h.  d can be taken as uniform 
in the ,0,r 1] range, and the structure-factor equation 
(2) can be rewritten for statistical purposes as 

N / 4  

F = 4  E f j c o s ~ c o s ( 0 j - ¢ ) ,  (3) 
j = l  

where Oj = 2rrh. rj and ~ = 2~-h. d are random vari- 
ables, taken as uniform in the [0, 2z r] range (cf. 
Shmueli et al., 1984). 

The analogy of F, represented as a vector polygon 
in the complex plane, with the picture of randomly 
oriented contiguous steps in the plane has been 
pointed out by Hauptman & Karle (1952) and by 
Wilson (1952), in connection with their early studies 
of structure-factor statistics. In the present case, a 
step in this random walk corresponds to four times 
the atomic scattering factor and the trigonometric 
expression in (3) is identified with a function that 
determines the projection of such a step onto the real 
axis. The required p.d.f, of F thus corresponds to 
that of the random walk, projected onto this direction, 
and can be determined from the relevant characteris- 
tic function as outlined, for example, by Weiss & 
Kiefer (1983). 

The characteristic function of the structure factor 
(3) is given by 

C(~o,)= exp 4ko, ~ f jcos~ocos(Oj-~o) . (4) 
j = l  

The integration in the right-hand side of (4) is per- 
formed first on the variables 0~ , . . . ,  0N/4 and sub- 
sequently on ~o. After some calculation one obtains 

C (w,) = (~I4 Jo(4to~ cos ~p)) (5) 
\ j = l  ~o 

~r/2 

"~ j = l  
0 

where Jo(x) is the Bessel function of the first kind of 
order zero (see, e.g., Abramowitz & Stegun, 1972). 

Since the structure factor can differ from zero only 
in the interval [-S~, SI], where S, = y N f j ,  and the 
corresponding p.d.f, for F is analogous to that of the 
projected random walk, we obtain it as the Fourier 
series 

P(F)=~-~ I+2.:,~. C,. cos ( TrmF/ S,) (7) 
(see Weiss & Kiefer, 1983; Shmueli et aL, 1984), 
where, in the present case, 

rr/2 

2 f )] =--Tr t. i=, Jok - - -~ l  cos ~o d~o -= C 7rm . 

0 

(8) 

Observing that P( F) -- P ( -  F), we obtain the p.d.f. 
of IF] by doubling the right-hand side of (7). Noting 
that 

P(IEI) = ( ~ f]) '/2P(IFI) (9) 
j = l  

(e.g. Shmueli & Wilson, 1981), we can finally express 
the p.d.f, of the normalized structure amplitude IEI as 

P( [EI )=°~[  l + 2 m = ,  ~ Cmcos(TrrnalE,)], (10) 

where 

( a =  ~ f ~  ~ f j  (11) 
j = l  =1 

and the Fourier coefficients C,, are defined by (8). 
The functional form of (10), apart from the problem- 
dependent Fourier coefficients, is the same as that 
given by Shmueli et al. (1984) for the p.d.f, of [E[ in 
the space group P1, in the absence of non-crystallo- 
graphic symmetry. 

It is interesting to note that one can readily derive 
the Rogers-Wilson (1953) distribution from (10) by 
assuming that all the atoms are of the same kind and 
the number of atoms in the unit cell is large. This 
calculation is given in Appendix A, where the corre- 
sponding reduction of the exact p.d.f, of IEI for P1, 
in the absence of non-crystallographic symmetry 
(Shmueli et al., 1984), is also indicated. 
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In order to evaluate the p.d.f, in (10), the integrals 
in (8)(i.e. the Fourier coefficients) must be computed 
numerically. Since the the integrand in (8) is a rather 
slowly varying function, any method of numerical 
integration appears to be adequate. We have tried the 
trapezoidal rule and Gaussian integration with nearly 
identical results. It is interesting to point out that, for 
large values of m, the Fourier coefficients turn out to 
be nearly proportional to 1 /m and use can be made 
of closed expressions for sums of the type 
Y~k COS ( k y ) / k  (e.g. Gradshteyn & Ryzhik, 1980), in 
attaining precise results. The computations shown in 
the next section were carried out using a twelve-point 
Gaussian integration, with the [0, 7r/2] interval sub- 
divided into four parts. The use of 40 terms in (10) 
appears to be more than adequate for the purpose of 
comparison of theoretical with simulated semi-cumu- 
lative distributions (i.e. histograms) and has to be 
increased if the residual small oscillations, due to 
series-termination errors, are to be smoothed out. It 
must be pointed out, however, that the series-termina- 
tion errors are independent of the heterogeneity of 
the asymmetric unit and their elimination is of 
aesthetic rather than practical importance. 

Simulated distributions 

The results obtained in the previous section have been 
applied to representative cases of a bicentric P1 struc- 
ture: (i) the equal-atom case, and (ii) an outstandingly 
heavy atom being present in the asymmetric subunit 
of the bicentric arrangement. For each case, 3000 
magnitudes of [El have been simulated using (3) and 
were grouped into thirty equal ranges in the interval 
0<  IEI <3,  as described elsehwere (Shmueli, 1982b; 
Shmueli et al., 1984). The resulting histograms rep- 
resent cumulative distribution of the simulated [El 
values, and are compared in Fig. 1 with the asymptotic 
p.d.f, for the equal-atom case (Rogers & Wilson, 1953) 
and with (10), which takes into account any given 
atomic composition of the asymmetric subunit. 

Both theoretical p.d.f.'s agree very well with the 
equal-atom histogram (Fig. la) ,  as expected. The 
approximate coalescence of both theoretical p.d.f.'s 
is also not surprising in view of their equivalence in 
the equal-atom case and in the limit of large N (see 
Appendix). 

Fig. 1 b shows the result obtained for an asymmetric 
subunit of Pi ,  corresponding to the composition 
C14U. The main effects of the heavy atom are a 
decreased origin peak, an enhanced probability for 
the occurrence of [ E[ values in the intermediate range 
and a faster decrease of the probability for high I EI 
values-when compared to the equal-atom case. 

The discrepancies between the theoretical and 
simulated distrubutions are due to fluctuations that 
are inherent in a simulation by computer-generated 
random numbers, and in actual comparisons they are 

expected toar ise  from the effects of finite sampling 
(cf. Shmueli et al., 1984). 

As in the absence of non-crystallographic symmetry 
(e.g. Shmueli & Wilson, 1981; Shmueli et al., 1984), 
the presence of the heavy atom makes the distribution 
appear less 'centric'. However, whereas in the absence 
of non-crystallographic symmetry the distribution 
acquires definite 'acentric' features (e.g. Shmueli et 
al., 1984), in the present case (Fig. l b) the effect of 
the heavy atom on the departure from the Rogers- 
Wilson (1953) statistics is appreciably less prominent. 

A quantitative comparison of the histograms with 
the two relevant theoretical p.d.f.'s is given in Table 
1, in terms of g 2 and R discrepancy criteria (cf. 
Shmueli et aI., 1984). 
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Fig. 1. Simulated and theoretical distributions of lE]. The theoreti- 

cal p.d.f.'s given in the figure are scaled to the histograms. The 
solid lines denote the asymptotic bicentric p.d.f. (Rogers & 
Wilson, 1953) and the dashed lines correspond to the random- 
walk p.d.f., given by equation (10). The height of each rectangle 
equals the number of lE I values that lie within the corresponding 
histogram channel. (a) The equal-atom case, with 15 atoms in 
the asymmetric subknit of P i  (N = 60). (b) A C14U asymmetric 
subunit in P i  (N = 60). 
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Table 1. Discrepancy measures for comparison of simu- 
lated distributions with asymptotic and exact p.d.f's 

The assumed composition of the asymmetric subunit is CmXp, and 
the indicator of heterogeneity is denoted by p = Z x / Z  o where Z 
is the atomic number. 

Discrepancy measures: R and X 2 are defined by equations (20) 
and (21) of Shmueli et al. (1984). The subscripts on R and X 2 are 
10 or I, according as the histrogram is compared with equation 
(10) or the asymptotic bicentric p.d.f. (Rogers & Wilson, 1953), 

where the corresponding expansion of the logarithm 
led from (A5) to (A6). Making use of the identity 
cos 2 ~p = (1 +cos 2q~)/2, and of known integral rep- 
resentations of Bessel functions (e.g. Abramowitz & 
Stegun, 1972), we obtain 

C(2)=exp (-Tr2m2/2N)Io(Tr2m2/2N), (A7) 

where Io(x) is a Bessel function. 
respectively. The effective number of channels that participated in I f  w e  substitute (A7) in (A8) and approximate t h e  
the calculation o f g  2 is denoted by k~o or K b the subscripts having - sum by an integral by replacing the discrete m/N ~/2 
the same meaning as for R and ;(2 above, by a continuous variable y = m~ N ~/2, (A1) becomes 

Simulated bicentnc P1 distributions: 

m p p X~o kl0 g~ kT Rz0 R~ 
14 1 1 17.8 30 17-0 30 0 .067  0.068 
14 I 15~ 27-1 26 381.6 30 0 . 0 8 6  0.274 

This work was carried out, in part, during the visit 
of one of us (US) to the National Institutes of Health. 
The support of this visit by the Division of Computer 
Research and Technology, at the NIH, is gratefully 
acknowledged. 

APPENDIX A 

If we assume that all the atoms are of the same kind, 
the p.d.f.'s of lEI for the space group P1 have the form 

P(k)(IEI) = 1 + 2 Y" C~ ) cos (rrmlEI/N '/z) , 
m=! 

(Al) 
where 

C~ )= J~/2(2~m/N), (A2) 

in the absence of non-crystallographic symmetry 
(Shmueli et al., 1984), and 

rr/2 

C(2m ) =27r f Jff/4[(47rm/N) cos ~p] d~p, (A3) 

0 

in the bicentric P i  case, discussed in the text. 
In the limit of large N we can approximate the 

Bessel function in (A3) by 

Jo[(47rm/N) cos c#]- 1 -(4"rr2m2/N 2) cos 2 ~p (A4) 

so that 
w/2 

C~)-~2rr f exp{(N/4)  

o 

xln [ 1 -  (4~2m2/N 2) cos 2 ~0]} dg, (A5) 
rr/2 

=2Ir f exp[-(Tr2m2/N) c°s2q~]d~' (A6) 

o 

(for k = 2) 
120 

)---2 I exp(-Tr2y2/2)I°(¢r2y2/2) 
/Q 

p(2)(  E 

o 

x cos (rrlEly) dy. (A8) 

From the known definite integral 
oo 

f x I/2 exp (-X)Io(x) cos (4ax '/2) dx 
o 

= 1/(2¢r) '/a exp (-a2)Ko(a2), (A9) 

(Gradshteyn & Ryzhik, 1980), (A1) becomes, for 
k=2 ,  

P(2)(IEI)~--~exp(-IElU/8)Ko(IEI2/8), (A10) 

where Ko(x) is a Bessel function. Equation (A10) is 
just the central limit theorem approximation derived 
by Rogers & Wilson (1953) for the bicentric distri- 
bution. 

It can also be shown by similar methods that (A 1), 
with the Fourier coefficient given by (A2), reduces in 
the limit of large N to 

P(I)(IEI) = exp (-IEI2/2),  ( A l l )  

which is the well known Wilson (1949) p.d.f, of [El 
for the centrosymmetric case, in the absence of non- 
crystallographic symmetry. 
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Abstract 

It is shown that a comprehensive symmetry descrip- 
tion in polycrystalline bodies needs black-white point 
groups rather than the usual (one-colour) groups that 
are sufficient for single crystals. 

1. Introduction 

Crystalline solids such as metals, ceramics or natural 
rocks usually exhibit a polycrystalline structure, i.e. 
they consist of small crystallites of the same crystal 
structure but with different orientations of their crys- 
tallographic axes. The orientation distribution of the 
crystallites is called the texture of the materials. If all 
crystal orientations are equally frequent, the material 
is then said to be macroscopically isotropic, i.e. its 
properties are the same in all directions. If, however, 
different orientations are present with different rela- 
tive frequencies, the anisotropies of the crystallites 
will, in general, not cancel each other and the material 
will be macroscopically anisotropic, i.e. its physical 
properties will be different when measured in different 
sample directions. In the latter case, symmetries may 
be observed in the directional dependence of the 
properties according to the specific features of the 
orientation distribution function. This type of sym- 
metry has been called sample symmetry and it should 
be kept distinct from crystal symmetry. The sample 
symmetry in rolled metal sheets, for example, is deter- 
mined by the symmetry of the production process, 
i.e. the geometry of the roll gap by which the material 
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has been shaped. This is an orthorhombic symmetry 
and the same type of symmetry is found in materials 
with different crystal structure and crystal symmetry, 
e.g. in cubic, hexagonal, tetragonal metals. (The 
details of the orientation distribution of the crystal- 
lites are, of course, different in these casbs whereas 
the type of sample symmetry is the same.) 

The purpose of this paper is to show that sample 
symmetries in polycrystalline materials can arise in 
two different ways, either by one-to-one relations 
between individual crystal orientations (conventional 
symmetry operations) or by certain integral relations 
taken over a continuous manifold of orientations 
(non-conventional symmetry operations). The non- 
conventional symmetry operations can occur in addi- 
tion to the conventiortal ones, thus requiring an 
extension of the conventional point-symmetry groups 
for polycrystals (Bunge, Esling &. Muller, 1980). The 
most efficient description of this extension is that of 
black-white groups considered for the first time by 
Heesch (1930), Shubnikov (1951) and Niggli & Won- 
dratschek (1960). 

It should be mentioned that black-white sym- 
metries have been considered in connection with tex- 
tures by Shubnikov (1958), Shubnikov, Sheludev, 
Konstantinova & Silvestrova (1958), Shubnikov & 
Belov (1964), but in a completely different sense. In 
these cases crystals having an additional black-white 
property were considered, whereas in the present 
paper the black-white notation is being used in order 
to describe certain properties of the orientation distri- 
bution of single-coloured crystals. A comprehensive 
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